All members of streaming are higher order functions. Each function returns a Stream.
Methods
covariance
Covariance is computed incrementally with arrival of each pair of x
and y
values from a stream of data.
The compute()
requires
two numeric arguments x
and y
.
The result()
returns
an object containing sample covariance cov
, along with
meanX
, meanY
and size
of data i.e. number of x & y pairs. It also contains
population covariance covp
.
Example
var covariance = cov();
covariance.compute( 10, 80 );
covariance.compute( 15, 75 );
covariance.compute( 16, 65 );
covariance.compute( 18, 50 );
covariance.compute( 21, 45 );
covariance.compute( 30, 30 );
covariance.compute( 36, 18 );
covariance.compute( 40, 9 );
covariance.result();
// returns { size: 8,
// meanX: 23.25,
// meanY: 46.5,
// cov: -275.8571,
// covp: -241.375
// }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
freqTable
Frequency table is built incrementally with arrival of each value from the stream of data.
The build()
requires
a single argument, which could be either a string or numeric value.
The result()
returns
an object containing the frequency table
sorted in descending order of
category frequency, along with table size
, sum
of frequencies,
x2
— chi-squared statistic, df
— degree of freedom, and the
entropy
.
The x2
along with the df
can be used to test the hypothesis, "the distribution is uniform". The
percentage
in table
represents %age of a category share in the sum
; and expected
count
assuming uniform distribution.
Example
var ft = freqTable();
ft.build( 'Tea' );
ft.build( 'Tea' );
ft.build( 'Tea' );
ft.build( 'Pepsi' );
ft.build( 'Pepsi' );
ft.build( 'Gin' );
ft.build( 'Coke' );
ft.build( 'Coke' );
ft.value();
// returns { Tea: 3, Pepsi: 2, Gin: 1, Coke: 2 }
ft.result();
// returns {
// table: [
// { category: 'Tea', observed: 3, percentage: 37.5, expected: 2 },
// { category: 'Pepsi', observed: 2, percentage: 25, expected: 2 },
// { category: 'Coke', observed: 2, percentage: 25, expected: 2 },
// { category: 'Gin', observed: 1, percentage: 12.5, expected: 2 }
// ],
// size: 4,
// sum: 8,
// x2: 1,
// df: 3,
// entropy: 1.9056
// }
Returns
Object containing methods such as build()
, result()
& reset()
.
- Type
- Stream
max
Maximum value is determined incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The result()
returns
an object containing max
.
Example
var maximum = max();
maximum.compute( 3 );
maximum.compute( 6 );
maximum.value();
// returns 6
maximum.result();
// returns { max: 6 }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
mean
Mean is computed incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The computations are inspired by the method proposed by B. P. Welford.
The result()
returns
an object containing sample mean
along with size
of data.
Example
var avg = mean();
avg.compute( 2 );
avg.compute( 3 );
avg.compute( 5 );
avg.compute( 7 );
avg.value();
// returns 4.25
avg.result();
// returns { n: 4, mean: 4.25 }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
min
Minimum value is determined incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The result()
returns
an object containing min
.
Example
var minimum = min();
minimum.compute( 3 );
minimum.compute( 6 );
minimum.value();
// returns 3
minimum.result();
// returns { min: 3 }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
simpleLinearRegression
Linear Regression is determined incrementally with arrival of each pair of x
and y
values from the data stream.
The compute()
requires
two numeric arguments viz. x
— independant variable and y
— dependant variable.
The result()
returns
an object containing slope
, intercept
, r
, r2
, se
along with
the size
of data i.e. number of x & y pairs. It has an alias
value()
.
In case of any error such as no input data or zero variance, correlation object will be an empty one.
Example
var regression = simpleLinearRegression();
regression.compute( 10, 80 );
regression.compute( 15, 75 );
regression.compute( 16, 65 );
regression.compute( 18, 50 );
regression.compute( 21, 45 );
regression.compute( 30, 30 );
regression.compute( 36, 18 );
regression.compute( 40, 9 );
regression.result();
// returns { slope: -2.3621,
// intercept: 101.4188,
// r: -0.9766,
// r2: 0.9537,
// se: 5.624,
// size: 8
// }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
stdev
Standard Deviation is computed incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The computations are inspired by the method proposed by B. P. Welford.
The result()
returns
returns an object containing sample stdev
and
variance
, along with mean
, size
of data; it also
contains population standard deviation and variance as stdevp
and variancep
.
Example
var sd = stdev();
sd.compute( 2 );
sd.compute( 3 );
sd.compute( 5 );
sd.compute( 7 );
sd.value();
// returns 2.2174
sd.result();
// returns { size: 4, mean: 4.25,
// variance: 4.9167,
// stdev: 2.2174,
// variancep: 3.6875,
// stdevp: 1.9203
// }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
sum
Sum is computed incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The result()
returns
an object containing sum
.
Example
var addition = sum();
addition.compute( 1 );
addition.compute( 10e+100 );
addition.compute( 1 );
addition.compute( -10e+100 );
addition.value();
// returns 2
addition.result();
// returns { sum: 2 }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream
summary
Summary Statistics is computed incrementally with arrival of each value from the data stream.
The compute()
requires
a single numeric value as argument.
The computations are inspired by the method proposed by B. P. Welford.
The result()
returns
an object containing size
, min
, mean
, max
, sample stdev
along with
sample variance
of data; it also
contains population standard deviation and variance as stdevp
and variancep
.
Example
var ss = summary();
ss.compute( 2 );
ss.compute( 3 );
ss.compute( 5 );
ss.compute( 7 );
ss.result();
// returns { size: 4, min: 2, mean: 4.25, max: 7,
// variance: 4.9167,
// stdev: 2.2174,
// 3.6875,
// stdevp: 1.9203
// }
Returns
Object containing methods such as compute()
, result()
& reset()
.
- Type
- Stream